Aflatoxin B1 damaged structural barrier through Keap1a/Nrf2/ MLCK signaling pathways and immune barrier through NF-κB/ TOR signaling pathways in gill of grass carp (Ctenopharyngodon idella).

Autor: He XN; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China., Zeng ZZ; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China., Feng L; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China. Electronic address: zhouxq@sicau.edu.cn., Wu P; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China., Jiang WD; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China., Liu Y; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China., Zhang L; Tongwei Research Institute, Chengdu 600438, China., Mi HF; Tongwei Research Institute, Chengdu 600438, China., Kuang SY; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China., Tang L; Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China., Zhou XQ; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China. Electronic address: fenglin@sicau.edu.cn.
Jazyk: angličtina
Zdroj: Aquatic toxicology (Amsterdam, Netherlands) [Aquat Toxicol] 2023 Apr; Vol. 257, pp. 106424. Date of Electronic Publication: 2023 Feb 10.
DOI: 10.1016/j.aquatox.2023.106424
Abstrakt: Aquafeeds are susceptible to contamination caused by aflatoxin B1 (AFB1). The gill of fish is an important respiratory organ. However, few studies have investigated the effects of dietary AFB1 exposure on gill. This study aimed to discuss the effects of AFB1 on the structural and immune barrier of grass carp gill. Dietary AFB1 increased reactive oxygen species (ROS) levels, protein carbonyl (PC) and malondialdehyde (MDA) contents, which consequently caused oxidative damage. In contrast, dietary AFB1 decreased antioxidant enzymes activities, relative genes expression (except MnSOD) and the contents of glutathione (GSH) (P < 0.05), which are partly regulated by NF-E2-related factor 2 (Nrf2/Keap1a). Moreover, dietary AFB1 caused DNA fragmentation. The relative genes of apoptosis (except Bcl-2, McL-1 and IAP) were significantly upregulated (P < 0.05), and apoptosis was likely upregulated through p38 mitogen-activated protein kinase (p38MAPK). The relative expressions of genes associated with tight junction complexes (TJs) (except ZO-1 and claudin-12) were significantly decreased (P < 0.05), and TJs were likely regulated by myosin light chain kinase (MLCK). Overall, dietary AFB1 disrupted the structural barrier of gill. Furthermore, AFB1 increased gill sensitivity to F. columnare, increased Columnaris disease and decreased the production of antimicrobial substances (P < 0.05) in grass carp gill, and upregulated the expression of genes involved with pro-inflammatory factors (except TNF-α and IL-8) and the pro-inflammatory response partly attributed to the regulation by nuclear factor κB (NF-κB). Meanwhile, the anti-inflammatory factors were downregulated (P < 0.05) in grass carp gill after challenge with F. columnare, which was partly attributed to the target of rapamycin (TOR). These results suggested that AFB1 aggravated the disruption of the immune barrier of grass carp gill after being challenge with F. columnare. Finally, the upper limit of safety of AFB1 for grass carp, based on Columnaris disease, was 31.10 μg/kg diet.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023. Published by Elsevier B.V.)
Databáze: MEDLINE