Flow cytometric detection of IFN-γ production and Caspase-3 activation in CD4 + T lymphocytes to discriminate between healthy and Mycobacterium bovis naturally infected water buffaloes.

Autor: De Matteis G; CREA-Council for Agricultural Research and Economics- Research Centre for Animal Production and Aquaculture, 00015, Monterotondo, Italy. Electronic address: giovanna.dematteis@crea.gov.it., Scatà MC; CREA-Council for Agricultural Research and Economics- Research Centre for Animal Production and Aquaculture, 00015, Monterotondo, Italy., Zampieri M; Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00161, Rome, Italy., Grandoni F; CREA-Council for Agricultural Research and Economics- Research Centre for Animal Production and Aquaculture, 00015, Monterotondo, Italy., Elnaggar MM; Department of Veterinary Medicine, College of Applied and Health Sciences, A'Sharqiyah University, Ibra, Oman; Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Egypt., Schiavo L; Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy., Cappelli G; Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy., Cagiola M; Istituto Zooprofilattico Sperimentale Umbria e Marche, Perugia, Italy., De Carlo E; Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy., Davis WC; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States., Martucciello A; Istituto Zooprofilattico Sperimentale del Mezzogiorno, National Reference Centre for Hygiene and Technologies of Water Buffalo Farming and Productions, Salerno, Italy.
Jazyk: angličtina
Zdroj: Tuberculosis (Edinburgh, Scotland) [Tuberculosis (Edinb)] 2023 Mar; Vol. 139, pp. 102327. Date of Electronic Publication: 2023 Feb 21.
DOI: 10.1016/j.tube.2023.102327
Abstrakt: Tuberculosis has a negative economic impact on buffalo farming, and it poses a potential threat to human health. Interferon-gamma (IFN-γ) plays a central role in protection against mycobacterial diseases, illustrating the importance of T-cell mediated immune responses in tuberculosis infection. Recently, the expression of Caspase-3, a critical executor of apoptosis, in M. tuberculosis-specific IFN-γ + CD4 + T cells was used as a new marker to distinguish active from latent tuberculosis infection in humans. The aims of this work were to develop a whole blood flow cytometric assay to detect the production of IFN-γ and the activation of Caspase-3 by CD4 + T lymphocytes from water buffalo and to evaluate whether these parameters can discriminate between healthy and M. bovis naturally infected buffaloes. A total of 35 Italian Mediterranean buffaloes were grouped in two groups: uninfected and M. bovis infected (based on the results of antemortem diagnostic tests: single intradermal tuberculin (SIT) and ELISA IFN-γ tests). Whole blood was incubated for 6 h with tubercular antigens: PPD-B, PPD-A, ESAT-6/CFP-10 and a new mix of precocious secreted antigens (PA). Our results showed a significant increase in the percentage of IFN-γ + CD4 + T cells in infected compared to the uninfected animals after each stimulus. Improved sensitivity of the assay was obtained by including the stimulation with the new mix of PA. Interestingly, we observed a concomitant decrease in percentage of Caspase-3 + CD4 + T cells in M. bovis infected animals compared to the control healthy ones, regardless of the stimulus used. Overall, these results showed that M. bovis infection activates CD4 + T lymphocytes to produce IFN-γ and at the same time causes a concomitant decrease of Caspase-3 activation in CD4 + T cells. This study for the first time in water buffalo describes the development of a whole blood flow cytometric assay for the detection of IFN-γ producing CD4 + T cells and proposes the expression of active Caspase-3 as an additional bovine TB biomarker. Although further studies are needed to better understand the mechanisms of Caspase-3-mediated cell death during tuberculosis, our data can help to better understand the cellular immune response to M. bovis infection in buffalo species.
Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Databáze: MEDLINE