Autor: |
Abdulkareem MA; Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica s/n, Ciudad Universitaria, Morelia C. P. 58030, Michoacán, Mexico., López-Rayón F; Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, San Manuel, Puebla C. P. 72570, Puebla, Mexico., Sosa-Sánchez CT; Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca C. P. 66629, Nuevo León, Mexico., Bautista González RE; School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia., Arroyo Carrasco ML; Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, San Manuel, Puebla C. P. 72570, Puebla, Mexico., Peña-Gomar M; Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica s/n, Ciudad Universitaria, Morelia C. P. 58030, Michoacán, Mexico., Coello V; Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca C. P. 66629, Nuevo León, Mexico., Téllez-Limón R; CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca C. P. 66629, Nuevo León, Mexico. |
Abstrakt: |
The growing development of nanotechnology requires the design of new devices that integrate different functionalities at a reduced scale. For on-chip applications such as optical communications or biosensing, it is necessary to selectively transmit a portion of the electromagnetic spectrum. This function is performed by the so-called band-pass filters. While several plasmonic nanostructures of complex fabrication integrated to optical waveguides have been proposed, hyperbolic metamaterials remain almost unexplored for the design of integrated band-pass filters at optical wavelengths. By making use of the effective medium theory and finite integration technique, in this contribution we numerically study an integrated device consisting of a one-dimensional hyperbolic metamaterial placed on top of a photonic waveguide. The results show that the filling fraction, period, and number of layers modify the spectral response of the device, but not for type II and effective metal metamaterials. For the proposed Au-TiO 2 multilayered system, the filter operates at a wavelength of 760 nm, spectral bandwidth of 100 nm and transmission efficiency above 40%. The designed devices open new perspectives for the development of integrated band-pass filters of small scale for on-chip integrated optics applications. |