Autor: |
Ageeva AA; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia.; Department of Natural Sciences, Department of Physics, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia., Lukyanov RS; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia.; Department of Natural Sciences, Department of Physics, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia., Martyanova SO; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia.; Department of Natural Sciences, Department of Physics, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia., Magin IM; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia., Kruppa AI; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia., Polyakov NE; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia., Plyusnin VF; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia.; Department of Natural Sciences, Department of Physics, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia., Doktorov AB; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia., Leshina TV; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Str., 630090 Novosibirsk, Russia. |
Abstrakt: |
Optical isomers of short peptide Lysine-Tryptophan-Lysine (Lys-{L/D-Trp}-Lys) and Lys-Trp-Lys with an acetate counter-ion were used to study photoinduced intramolecular and intermolecular processes of interest in photobiology. A comparison of L- and D-amino acid reactivity is also the focus of scientists' attention in various specialties because today, the presence of amyloid proteins with D-amino acids in the human brain is considered one of the leading causes of Alzheimer's disease. Since aggregated amyloids, mainly Aβ42, are highly disordered peptides that cannot be studied with traditional NMR and X-ray techniques, it is trending to explore the reasons for differences between L- and D-amino acids using short peptides, as in our article. Using NMR, chemically induced dynamic nuclear polarization (CIDNP) and fluorescence techniques allowed us to detect the influence of tryptophan (Trp) optical configuration on the peptides fluorescence quantum yields, bimolecular quenching rates of Trp excited state, and the photocleavage products formation. Thus, compared with the D-analog, the L-isomer shows a greater Trp excited state quenching efficiency with the electron transfer (ET) mechanism. There are experimental confirmations of the hypothesis about photoinduced ET between Trp and the CONH peptide bond, as well as between Trp and another amide group. |