Structure and Composition of the Cuticle of the Goose Barnacle Pollicipes pollicipes : A Flexible Composite Biomaterial.

Autor: Almeida M; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Fernandes EM; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Marques CF; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Lobo FCM; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Sousa RO; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Reis RL; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal., Silva TH; 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal.; ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal.
Jazyk: angličtina
Zdroj: Marine drugs [Mar Drugs] 2023 Jan 29; Vol. 21 (2). Date of Electronic Publication: 2023 Jan 29.
DOI: 10.3390/md21020096
Abstrakt: Arthropods, the largest animal phylum, including insects, spiders and crustaceans, are characterized by their bodies being covered primarily in chitin. Besides being a source of this biopolymer, crustaceans have also attracted attention from biotechnology given their cuticles' remarkable and diverse mechanical properties. The goose barnacle, Pollicipes pollicipes , is a sessile crustacean characterized by their body parts covered with calcified plates and a peduncle attached to a substrate covered with a cuticle. In this work, the composition and structure of these plates and cuticle were characterized. The morphology of the tergum plate revealed a compact homogeneous structure of calcium carbonate, a typical composition among marine invertebrate hard structures. The cuticle consisted of an outer zone covered with scales and an inner homogenous zone, predominantly organic, composed of successive layers parallel to the surface. The scales are similar to the tergum plate and are arranged in parallel and oriented semi-vertically. Structural and biochemical characterization confirmed a bulk composition of ɑ-chitin and suggested the presence of elastin-based proteins and collagen. The mechanical properties of the cuticle showed that the stiffness values are within the range of values described in elastomers and soft crustacean cuticles resulting from molting. The removal of calcified components exposed round holes, detailed the structure of the lamina, and changed the protein properties, increasing the rigidity of the material. This flexible cuticle, predominantly inorganic, can provide bioinspiration for developing biocompatible and mechanically suitable biomaterials for diverse applications, including in tissue engineering approaches.
Databáze: MEDLINE