Cholinergic nerve contribution to cutaneous active vasodilation during exercise is similar to whole body passive heating.

Autor: Francisco MA; Department of Human Physiology, University of Oregon, Eugene, Oregon, United States., Gibson BM; Department of Human Physiology, University of Oregon, Eugene, Oregon, United States., Simmons GH; Department of Human Physiology, University of Oregon, Eugene, Oregon, United States., Halliwill JR; Department of Human Physiology, University of Oregon, Eugene, Oregon, United States., Minson CT; Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.
Jazyk: angličtina
Zdroj: Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 2023 Apr 01; Vol. 134 (4), pp. 933-940. Date of Electronic Publication: 2023 Feb 24.
DOI: 10.1152/japplphysiol.00299.2022
Abstrakt: Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% V̇o 2peak ) and were passively heated (∼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox ∼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by ∼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less ( P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality. NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.
Databáze: MEDLINE