Electrochemical determination of benomyl using MWCNTs interspersed graphdiyne as enhanced electrocatalyst.
Autor: | Shi M; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China.; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China., Xue SY; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China., Peng GW; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China., Xu JK; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China., Gao YS; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China., Liu SW; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China., Duan XM; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, Flexible Electronics Innovation Institute (FEII), School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China. duanxuemin@126.com., Lu LM; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Materials and Chemistry, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China. lulimin816@hotmail.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Mikrochimica acta [Mikrochim Acta] 2023 Feb 20; Vol. 190 (3), pp. 98. Date of Electronic Publication: 2023 Feb 20. |
DOI: | 10.1007/s00604-023-05684-4 |
Abstrakt: | Graphdiyne (GDY) has attracted a lot of interest in electrochemical sensing application with the advantages of a large conjugation system, porous structure, and high structure defects. Herein, to further improve the sensing effect of GDY, conductive MWCNTs were chosen as the signal accelerator. To get a stable composite material, polydopamine (PDA) was employed as connecting bridge between GDY and MWCNTs-NH (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |