Commonsense psychology in human infants and machines.

Autor: Stojnić G; Department of Psychology, New York University, New York, NY, USA., Gandhi K; Department of Computer Science, Stanford University, Palo Alto, CA, USA., Yasuda S; Department of Psychology, New York University, New York, NY, USA., Lake BM; Department of Psychology, New York University, New York, NY, USA; Center for Data Science, New York University, New York, NY, USA., Dillon MR; Department of Psychology, New York University, New York, NY, USA. Electronic address: moira.dillon@nyu.edu.
Jazyk: angličtina
Zdroj: Cognition [Cognition] 2023 Jun; Vol. 235, pp. 105406. Date of Electronic Publication: 2023 Feb 16.
DOI: 10.1016/j.cognition.2023.105406
Abstrakt: Human infants are fascinated by other people. They bring to this fascination a constellation of rich and flexible expectations about the intentions motivating people's actions. Here we test 11-month-old infants and state-of-the-art learning-driven neural-network models on the "Baby Intuitions Benchmark (BIB)," a suite of tasks challenging both infants and machines to make high-level predictions about the underlying causes of agents' actions. Infants expected agents' actions to be directed towards objects, not locations, and infants demonstrated default expectations about agents' rationally efficient actions towards goals. The neural-network models failed to capture infants' knowledge. Our work provides a comprehensive framework in which to characterize infants' commonsense psychology and takes the first step in testing whether human knowledge and human-like artificial intelligence can be built from the foundations cognitive and developmental theories postulate.
(Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE