The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1.

Autor: Deprez MA; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium., Caligaris M; Department of Biology, University of Fribourg, Fribourg, Switzerland., Rosseels J; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium., Hatakeyama R; Department of Biology, University of Fribourg, Fribourg, Switzerland.; Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom., Ghillebert R; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium., Sampaio-Marques B; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal., Mudholkar K; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany., Eskes E; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium., Meert E; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium., Ungermann C; Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany., Ludovico P; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal., Rospert S; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany., De Virgilio C; Department of Biology, University of Fribourg, Fribourg, Switzerland., Winderickx J; Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium.
Jazyk: angličtina
Zdroj: PLoS genetics [PLoS Genet] 2023 Feb 15; Vol. 19 (2), pp. e1010641. Date of Electronic Publication: 2023 Feb 15 (Print Publication: 2023).
DOI: 10.1371/journal.pgen.1010641
Abstrakt: Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2023 Deprez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje