A molecular device for the redox quality control of GroEL/ES substrates.

Autor: Dupuy E; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium., Van der Verren SE; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium., Lin J; Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA., Wilson MA; Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA., Dachsbeck AV; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium., Viela F; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-neuve, Belgium., Latour E; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium., Gennaris A; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium., Vertommen D; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium., Dufrêne YF; Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-neuve, Belgium., Iorga BI; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France., Goemans CV; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. Electronic address: camille.goemans@embl.de., Remaut H; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium. Electronic address: han.remaut@vub.be., Collet JF; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium. Electronic address: jfcollet@uclouvain.be.
Jazyk: angličtina
Zdroj: Cell [Cell] 2023 Mar 02; Vol. 186 (5), pp. 1039-1049.e17. Date of Electronic Publication: 2023 Feb 09.
DOI: 10.1016/j.cell.2023.01.013
Abstrakt: Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2023 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE