Improved charge-transfer resonance in graphene oxide/ZrO 2 substrates for plasmonic-free SERS determination of methyl parathion.

Autor: Vargas-Zamarripa M; Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico; División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Mexico., Rivera AA; Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico., Sierra U; Laboratorio Nacional de Materiales Grafénicos. Centro de Investigación en Química Aplicada, 140, Blvd. Enrique Reyna, Saltillo, Coahuila, 25294, Mexico., Salas P; Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico., Serafín-Muñoz AH; División de Ingenierías, Universidad de Guanajuato, Av. Juárez 77, C.P. 36000, Guanajuato, Mexico., Ramírez-García G; Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, 3001, Boulevard Juriquilla, 76230, Querétaro, Mexico. Electronic address: gonzalo.ramirez@fata.unam.mx.
Jazyk: angličtina
Zdroj: Chemosphere [Chemosphere] 2023 Apr; Vol. 320, pp. 138081. Date of Electronic Publication: 2023 Feb 07.
DOI: 10.1016/j.chemosphere.2023.138081
Abstrakt: This work reports a sensitive SERS substrate based on graphene oxide (GO) and quantum-sized ZrO 2 nanoparticles (GO/ZrO 2 ) for label-free determination of the organophosphate pesticide methyl parathion (MP). The enhanced light-matter interactions and the consequent SERS effect in these substrates resulted from the effective charge transfer (CT) mechanism attributed to synergistic contributions of three main factors: i) the strong molecular adherence of the MP molecules and the ZrO 2 surface which allows the first layer-effect, ii) the relatively abundant surface defects in low dimensional ZrO 2 semiconductor NPs, which act as intermediate electronic states that reduce the large bandgap barrier, and iii) the hindered charge recombination derived from the transference of the photoinduced holes to the GO layer. This mechanism allowed an enhancement factor of 8.78 × 10 4 for GO/ZrO 2 -based substrates, which is more than 5-fold higher than the enhancement observed for platforms without GO. A detection limit of 0.12 μM was achieved with an outstanding repeatability (variation ≤4.5%) and a linear range up to 10 μM, which is sensitive enough to determine the maximal MP concentration permissible in drinking water according to international regulations. Furthermore, recovery rates between 97.4 and 102.1% were determined in irrigation water runoffs, strawberry and black tea extracts, demonstrating the reliability of the hybrid GO/ZrO 2 substrate for the organophosphate pesticides quantification in samples related to agri-food sectors and environmental monitoring.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2023 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE