Hexavalent chromium-induced epigenetic instability and transposon activation lead to phenotypic variations and tumors in Drosophila .

Autor: Parikh RY; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA., Gangaraju VK; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
Jazyk: angličtina
Zdroj: Environmental epigenetics [Environ Epigenet] 2022 Dec 28; Vol. 9 (1), pp. dvac030. Date of Electronic Publication: 2022 Dec 28 (Print Publication: 2023).
DOI: 10.1093/eep/dvac030
Abstrakt: Developmental robustness represents the ability of an organism to resist phenotypic variations despite environmental insults and inherent genetic variations. Derailment of developmental robustness leads to phenotypic variations that can get fixed in a population for many generations. Environmental pollution is a significant worldwide problem with detrimental consequences of human development. Understanding the genetic basis for how pollutants affect human development is critical for developing interventional therapies. Here, we report that environmental stress induced by hexavalent chromium, Cr(VI), a potent industrial pollutant, compromises developmental robustness, leading to phenotypic variations in the progeny. These phenotypic variations arise due to epigenetic instability and transposon activation in the somatic tissues of the progeny rather than novel genetic mutations and can be reduced by increasing the dosage of Piwi - a Piwi-interacting RNA-binding protein, in the ovary of the exposed mother. Significantly, the derailment of developmental robustness by Cr(VI) exposure leads to tumors in the progeny, and the predisposition to develop tumors is fixed in the population for at least three generations. Thus, we show for the first time that environmental pollution can derail developmental robustness and predispose the progeny of the exposed population to develop phenotypic variations and tumors.
(© The Author(s) 2023. Published by Oxford University Press.)
Databáze: MEDLINE