Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain.

Autor: Heger JE; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de., Chen W; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de.; College of Engineering Physics, Shenzhen Technology University (SZTU), Lantian Road 3002, Pingshan, 518118 Shenzhen, China., Zhong H; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de., Xiao T; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de., Harder C; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de.; Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany., Apfelbeck FAC; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de., Weinzierl AF; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de., Boldt R; Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany., Schraa L; Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany., Euchler E; Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany., Sambale AK; Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany., Schneider K; Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden, Germany., Schwartzkopf M; Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany., Roth SV; Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.; Royal Institute of Technology KTH, Teknikringen 34-35, 100 44 Stockholm, Sweden., Müller-Buschbaum P; Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany. muellerb@ph.tum.de.; Technical University of Munich, Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748 Garching, Germany.
Jazyk: angličtina
Zdroj: Nanoscale horizons [Nanoscale Horiz] 2023 Feb 27; Vol. 8 (3), pp. 383-395. Date of Electronic Publication: 2023 Feb 27.
DOI: 10.1039/d2nh00548d
Abstrakt: The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Förster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
Databáze: MEDLINE