A scoping review of the testing of bulk milk to detect infectious diseases of dairy cattle: Diseases caused by bacteria.

Autor: Nobrega DB; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. Electronic address: dnobrega@uoguelph.ca., French JE; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada., Kelton DF; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Jazyk: angličtina
Zdroj: Journal of dairy science [J Dairy Sci] 2023 Mar; Vol. 106 (3), pp. 1986-2006. Date of Electronic Publication: 2023 Jan 27.
DOI: 10.3168/jds.2022-22395
Abstrakt: Testing of bulk milk (BM) samples is a convenient, cost-effective strategy that can easily be implemented as part of disease surveillance programs on dairy farms. Here, we performed a scoping review to summarize the literature reporting on the testing of BM samples to detect infectious diseases of dairy cattle caused by bacteria. We also provide a non-exhaustive, albeit significant, list of diagnostic tests that are marketed for BM samples, as well as a list of disease surveillance activities that included testing of BM samples. A literature search was carried out in 5 databases, yielding 8,829 records from which 474 were retained. Overall, 575 eligible bacterial pathogens were screened for using BM samples, ranging from 1 to 6 individual pathogens per study. Staphylococcus aureus, including methicillin-resistant Staph. aureus, were the most studied bacteria (n = 179 studies), followed by Streptococcus agalactiae (86), Mycobacterium avium ssp. paratuberculosis (79), Coxiella burnetii (79), and Mycoplasma spp. (67). Overall, culture-based protocols, ELISA, real-time PCR, and PCR were the most commonly adopted methodologies to screen BM samples. Sensitivity of BM testing for bovine paratuberculosis was generally low and varied greatly according to the ELISA cut-offs adopted and herd-level definition of disease. In general, protocols had low to moderate sensitivities (<50%), which increased for herds with high within-herd seroprevalence. Specificity of BM testing for paratuberculosis was generally high. With respect to mastitis pathogens, BM testing demonstrated high sensitivity and specificity for Strep. agalactiae, in general. However, we observed inconsistency among studies with respect to the sensitivity of BM culture to detect infected herds, which was notably higher if enrolled herds were heavily infected or had history of clinical disease. Among Salmonella spp. pathogens, Salmonella Dublin was the most frequently studied bacterium for which BM testing has been validated. Specificity of BM ELISA was high, ranging from 89.0 to 99.4. In contrast, sensitivity varied greatly among studies, ranging from 50.6% to 100%. Our findings support that one of most important factors affecting sensitivity of BM ELISA for Salmonella Dublin is whether nonlactating cattle are considered in the definition of herd infection status. In general, protocols analyzed in this review suffered from very low sensitivities, which hardly justifies their use as part of disease surveillance as single testing. Nevertheless, test sensitivity can be increased by the adoption of more inclusive definitions of disease-free herds. Further, low-sensitivity and high-specificity methods can be valuable tools for surveillance when used repeatedly over time.
(The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
Databáze: MEDLINE