Autor: |
van den Kerkhof M; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands., van der Thiel MM; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, The Netherlands., van Oostenbrugge RJ; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands., Postma AA; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands., Kroon AA; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.; Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands., Backes WH; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands., Jansen JF; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. |
Abstrakt: |
Arterial walls stiffen with age, cardiovascular risk factors, and various vascular diseases, which may lead to less damping of the arterial blood flow pulse, subsequent microvascular damage, and enlarged perivascular spaces (PVS). However, the exact interplay between these processes is unclear. This study aimed to investigate the relation between blood flow velocity pulsatility in the small lenticulostriate arteries and their supplying middle cerebral artery and the respective damping factor (DF), with the number of MRI-visible PVS in elderly subjects. Blood flow velocity waveforms were obtained in 45 subjects (median age [range]: 64 [48-81] years, 47% male) using 7T MRI. PVS were scored in the basal ganglia (BG) and centrum semiovale (CSO). Spearman correlation analyses were used to determine associations of the blood flow pulsatility and the DF, with PVS score, adjusted for age and sex. We found a significant association between a lower DF and a higher number of PVS in the BG ( r s = -0.352, P = 0.021), but not in the CSO. This finding supports the supposed pathophysiological mechanism in which excessive kinetic energy deposition leads to damage of small perforating arteries and contributes to the enlargement of PVS at the level of the BG, but possible other pathways might also be of influence. |