Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl ( Gallus gallus domesticus )?

Autor: Garant RC; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1., Tobalske BW; Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA., Ben Sassi N; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1., van Staaveren N; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1., Tulpan D; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1., Widowski T; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1., Powers DR; Department of Biology, George Fox University, 414 N Meridian Street, Newberg, OR 97132, USA., Harlander-Matauschek A; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, Canada N1G 2W1.
Jazyk: angličtina
Zdroj: Royal Society open science [R Soc Open Sci] 2023 Jan 25; Vol. 10 (1), pp. 220809. Date of Electronic Publication: 2023 Jan 25 (Print Publication: 2023).
DOI: 10.1098/rsos.220809
Abstrakt: Domestic chickens may live in environments which restrict wing muscle usage. Notably, reduced wing activity and accompanying muscle weakness are hypothesized risk factors for keel bone fractures and deviations. We used radio-frequency identification (RFID) to measure duration spent at elevated resources (feeders, nest-boxes), ultrasonography to measure muscle thickness (breast and lower leg) changes, radiography and palpation to determine fractures and deviations, respectively, following no, partial (one-sided wing sling) and full (cage) immobilization in white- and brown-feathered birds. We hypothesized partially immobilized hens would reduce elevated resource usage and that both immobilization groups would show decreased pectoralis thickness (disuse) and increased prevalence of fractures and deviations. Elevated nest-box usage was 42% lower following five weeks of partial immobilization for brown-feathered hens but no change in resource usage in white-feathered birds was observed. Fully immobilized, white-feathered hens showed a 17% reduction in pectoralis thickness, while the brown-feathered counterparts showed no change. Lastly, fractures and deviations were not affected in either strain or form of wing immobilization; however, overall low numbers of birds presented with these issues. Altogether, this study shows a profound difference between white- and brown-feathered hens in response to wing immobilization and associated muscle physiology.
(© 2023 The Authors.)
Databáze: MEDLINE