The Mystery of Cancer Resistance: A Revelation Within Nature.

Autor: Trivedi DD; Institute of Science, Nirma University, Ahmedabad, Gujarat, India., Dalai SK; Institute of Science, Nirma University, Ahmedabad, Gujarat, India., Bakshi SR; Institute of Science, Nirma University, Ahmedabad, Gujarat, India. sonal.bakshi@nirmauni.ac.in.
Jazyk: angličtina
Zdroj: Journal of molecular evolution [J Mol Evol] 2023 Apr; Vol. 91 (2), pp. 133-155. Date of Electronic Publication: 2023 Jan 24.
DOI: 10.1007/s00239-023-10092-6
Abstrakt: Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje