9-N-n-alkyl Berberine Derivatives: Hypoglycemic Activity Evaluation.

Autor: Khvostov MV; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Gladkova ED; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Borisov SA; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Fedotova MS; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia.; V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia., Zhukova NA; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Marenina MK; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Meshkova YV; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Valutsa N; Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia., Luzina OA; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Tolstikova TG; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia., Salakhutdinov NF; N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia.
Jazyk: angličtina
Zdroj: Pharmaceutics [Pharmaceutics] 2022 Dec 22; Vol. 15 (1). Date of Electronic Publication: 2022 Dec 22.
DOI: 10.3390/pharmaceutics15010044
Abstrakt: Several novel 9-N-n-alkyl derivatives of berberine (C5, C7, C10, C12) were synthesized. They were analyzed in vitro and in vivo for their hypoglycemic activity. In vitro studies showed that the derivatives with shorter alkyl substitutes at concentrations ranging from 2.5 to 10 μM were able to stimulate glucose consumption by HepG2 cells more prominently than the derivatives with longer substitutes (C10 and C12). All compounds demonstrated a better effect compared to berberine. Their impact on cells' viability also depended on the alkyl substitutes length, but in this case, C10 and C12 derivatives demonstrated the best results. A similar correlation was also found in the OGTT, where the C5 derivative demonstrated a pronounced hypoglycemic effect at a dose of 15 mg/kg and C12 was less effective. This compound was further investigated in C57BL/6 Ay mice for four weeks and was administered at a dose of 15 mg/kg. Pronounced effect of C12 on carbohydrate metabolism in mice was discovered: there was a decrease in fasting glucose levels and an increase in glucose tolerance in OGTT on the 14th and 28th days of the experiment. However, at the end of the experiment, signs of hepatosis exacerbation and an increase in the content of hepatic aminotransferases in blood were found.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje