Autor: |
Horiuchi M; Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kagoshima 8912393, Japan.; Division of Human Environmental Science, Mt. Fuji Research Institute, Yamanashi 4030005, Japan., Fukuoka Y; Faculty of Health and Sports Science, Doshisha University, Kyoto 6100394, Japan., Koyama K; Faculty of Sport Science, Yamanashi Gakuin University, Yamanashi 4008575, Japan., Oliver SJ; Institute for Applied Human Physiology, School of Human and Behavioural Sciences, College of Human Sciences, Bangor University, Bangor LL57 2DG, UK. |
Abstrakt: |
Previous studies have shown tart cherry (TC) to improve exercise performance in normoxia. The effect of TC on hypoxic exercise performance is unknown. This study investigated the effects of 5 days of tart cherry (TC) or placebo (PL) supplementation on hypoxic exercise performance. Thirteen healthy participants completed an incremental cycle exercise test to exhaustion (TTE) under two conditions: (i) hypoxia (13% O2) with PL and (ii) hypoxia with TC (200 mg anthocyanin per day for 4 days and 100 mg on day 5). Pulmonary gas exchange variables, peripheral arterial oxygen saturation (SpO2), deoxygenated hemoglobin (HHb), and tissue oxygen saturation (StO2) assessed by near-infrared spectroscopy in the vastus lateralis muscle were measured at rest and during exercise. Urinary 8-hydro-2′ deoxyguanosine (8-OHdG) excretion was evaluated pre-exercise and 1 and 5 h post-exercise. The TTE after TC (940 ± 84 s, mean ± standard deviation) was longer than after PL (912 ± 63 s, p < 0.05). During submaximal hypoxic exercise, HHb was lower and StO2 and SpO2 were higher after TC than PL. Moreover, a significant interaction (supplements × time) in urinary 8-OHdG excretion was found (p < 0.05), whereby 1 h post-exercise increases in urinary 8-OHdG excretion tended to be attenuated after TC. These findings indicate that short-term dietary TC supplementation improved hypoxic exercise tolerance, perhaps due to lower HHb and higher StO2 in the working muscles during submaximal exercise. |