Frequency of Pathogenic Germline Mutations in Early and Late Onset Familial Breast Cancer Patients Using Multi-Gene Panel Sequencing: An Egyptian Study.

Autor: Nassar A; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Zekri AN; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Kamel MM; Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt.; Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza 3546211, Egypt., Elberry MH; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Lotfy MM; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Seadawy MG; Biological Prevention Department, Chemical Warfare, 4.5 km Suez-Cairo Rd, Almaza, Cairo 11351, Egypt., Hassan ZK; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Soliman HK; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Lymona AM; Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt., Youssef ASE; Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt.
Jazyk: angličtina
Zdroj: Genes [Genes (Basel)] 2022 Dec 29; Vol. 14 (1). Date of Electronic Publication: 2022 Dec 29.
DOI: 10.3390/genes14010106
Abstrakt: Background: Precision oncology has been increasingly used in clinical practice and rapidly evolving in the oncology field. Thus, this study was performed to assess the frequency of germline mutations in early and late onset familial breast cancer (BC) Egyptian patients using multi-gene panel sequencing to better understand the contribution of the inherited germline mutations in BC predisposition. Moreover, to determine the actionable deleterious mutations associated with familial BC that might be used as biomarker for early cancer detection.
Methods: Whole blood samples were collected from 101 Egyptian patients selected for BC family history, in addition to 50 age-matched healthy controls. A QIAseq targeted DNA panel (human BC panel) was used to assess the frequency of germline mutations.
Results: A total of 58 patients (57.4%) out of 101 were found to have 27 deleterious germline mutations in 11 cancer susceptibility genes. Of them, 32 (31.6%) patients carried more than one pathogenic mutation and each one carried at least one pathogenic mutation. The major genes harboring the pathogenic mutations were: ATM , BRCA2 , BRCA1 , VHL , MSH6 , APC , CHEK2 , MSH2 , MEN1 , PALB2 , and MUTYH . Thirty-one patients (30.6%) had BRCA2 mutations and twenty (19.8%) had BRCA1 mutations. Our results showed that exon 10 and exon 11 harbored 3 and 5 mutations, respectively, in BRCA1 and BRCA2 genes. Our analysis also revealed that the VHL gene significantly co-occurred with each of the BRCA2 gene ( p = 0.003, event ratio 11/21), the MSH2 gene ( p = 0.01, 4/10), the CHEK2 gene ( p = 0.02, 4/11), and the MSH6 gene ( p = 0.04, 4/12). In addition, the APC gene significantly co-occurred with the MSH2 gene ( p = 0.01, 3/7). Furthermore, there was a significant mutually exclusive event between the APC gene and the ATM gene ( p = 0.04, 1/36). Interestingly, we identified population specific germline mutations in genes showing potentials for targeted therapy to meet the need for incorporating precision oncology into clinical practice. For example, the mutations identified in the ATM , APC , and MSH2 genes.
Conclusions: Multi-gene panel sequencing was used to detect the deleterious mutations associated with familial BC, which in turns mitigate the essential need for implementing next generation sequencing technologies in precision oncology to identify cancer predisposing genes. Moreover, identifying DNA repair gene mutations, with focus on non-BRCA genes, might serve as candidates for targeted therapy and will be increasingly used in precision oncology.
Databáze: MEDLINE