In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation.

Autor: Rubio-Ruiz B; Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.; Department of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain.; GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain., Pérez-López AM; Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.; TU Berlin, Institut für Biotechnologie, Aufgang 17-1, Level 4, Raum 472, Gustav-Meyer-Allee 25, 13355 Berlin, Germany., Uson L; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.; Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain., Ortega-Liebana MC; Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.; Department of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain.; GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain., Valero T; Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.; Department of Medicinal and Organic Chemistry and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071 Granada, Spain.; GENYO, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain., Arruebo M; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.; Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain.; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain., Hueso JL; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.; Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain.; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain., Sebastian V; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.; Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain.; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain., Santamaria J; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.; Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain.; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain., Unciti-Broceta A; Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2023 Feb 08; Vol. 23 (3), pp. 804-811. Date of Electronic Publication: 2023 Jan 17.
DOI: 10.1021/acs.nanolett.2c03593
Abstrakt: Bioorthogonal metallocatalysis has opened up a xenobiotic route to perform nonenzymatic catalytic transformations in living settings. Despite their promising features, most metals are deactivated inside cells by a myriad of reactive biomolecules, including biogenic thiols, thereby limiting the catalytic functioning of these abiotic reagents. Here we report the development of cytocompatible alloyed AuPd nanoparticles with the capacity to elicit bioorthogonal depropargylations with high efficiency in biological media. We also show that the intracellular catalytic performance of these nanoalloys is significantly enhanced by protecting them following two different encapsulation methods. Encapsulation in mesoporous silica nanorods resulted in augmented catalyst reactivity, whereas the use of a biodegradable PLGA matrix increased nanoalloy delivery across the cell membrane. The functional potential of encapsulated AuPd was demonstrated by releasing the potent chemotherapy drug paclitaxel inside cancer cells. Nanoalloy encapsulation provides a novel methodology to develop nanoreactors capable of mediating new-to-life reactions in cells.
Databáze: MEDLINE