Using 3D printed magnetic platform as support for screen printed electrode applied for p-toluenediamine detection in biological fluid and water samples.
Autor: | de Souza JC; São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile. Electronic address: souza_jc33@yahoo.com.br., Irikura K; São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile., Mantilla HDR; São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile., Zanoni MVB; São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical Chemistry, National Institute of Alternative Technologies for the Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Agents (INCT-DATREM), Rua Professor Francisco Degni, 55, Araraquara, 14800-060, São Paulo State, Brazil., Salazar R; University of Santiago of Chile (USACH), Faculty of Chemistry and Biology, Department of Chemistry of Materials, Environmental Electrochemistry Laboratory, Alameda Libertador Bernardo O'Higgins, 3363, Santiago - Box 40, Mail 33, Chile. |
---|---|
Jazyk: | angličtina |
Zdroj: | Analytica chimica acta [Anal Chim Acta] 2023 Feb 01; Vol. 1240, pp. 340745. Date of Electronic Publication: 2022 Dec 27. |
DOI: | 10.1016/j.aca.2022.340745 |
Abstrakt: | The present work reports the development and application of a new electrochemical sensor for the determination of low concentration levels of p-toluenediamine (PTD) in biological fluids and surface water samples. The proposed sensor was developed using a 3D-printed magnetic device as platform for carbon screen printed electrode (CSPE) modified by magnetic nanoparticles functionalized with carboxylic groups and l-cysteine (MNP-CA-CYS). The results obtained from the morphological and electrochemical characterizations of the sensing platform enabled us to confirm the success of the sensor functionalization with l-cysteine and to have a better understanding of the electrochemical behavior and preconcentration of PTD on the electrode surface. PTD oxidation occurred at 0.24V on MNP-CA-CYS and the mechanism recorded an increase of 51.0% in anodic peak current. Under optimized conditions, the square wave voltammograms obtained for the electrode modified by 40.0 μL MNP-CA-CYS suspension at 1.0 mg mL -1 , with accumulation time of 3 min, presented an analytical curve with linear range of 8.00 × 10 -7 to 8.00 × 10 -5 mol L -1 , represented by the equation Iap = (0.383 ± 0.011)[PTD] - (8.112 ± 0.07) × 10 -8 (R 2 = 0.9994), and detection and quantification limits of 8.53 × 10 -8 and 2.56 × 10 -7 mol L -1 , respectively. Finally, the proposed method was validated through comparison with high performance liquid chromatography coupled to diode array detector (HPLC-DAD) technique and was successfully applied for PTD determination in samples of surface water, tap water, fetal bovine serum and artificial urine. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2022 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |