Current approaches for the recreation of cardiac ischaemic environment in vitro.
Autor: | Paz-Artigas L; Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain., Montero-Calle P; Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain., Iglesias-García O; Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain., Mazo MM; Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain., Ochoa I; Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain. Electronic address: iochgar@unizar.es., Ciriza J; Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain. Electronic address: jeciriza@unizar.es. |
---|---|
Jazyk: | angličtina |
Zdroj: | International journal of pharmaceutics [Int J Pharm] 2023 Feb 05; Vol. 632, pp. 122589. Date of Electronic Publication: 2023 Jan 06. |
DOI: | 10.1016/j.ijpharm.2023.122589 |
Abstrakt: | Myocardial ischaemia is one of the leading dead causes worldwide. Although animal experiments have historically provided a wealth of information, animal models are time and money consuming, and they usually miss typical human patient's characteristics associated with ischemia prevalence, including aging and comorbidities. Generating reliable in vitro models that recapitulate the human cardiac microenvironment during an ischaemic event can boost the development of new drugs and therapeutic strategies, as well as our understanding of the underlying cellular and molecular events, helping the optimization of therapeutic approaches prior to animal and clinical testing. Although several culture systems have emerged for the recreation of cardiac physiology, mimicking the features of an ischaemic heart tissue in vitro is challenging and certain aspects of the disease process remain poorly addressed. Here, current in vitro cardiac culture systems used for modelling cardiac ischaemia, from self-aggregated organoids to scaffold-based constructs and heart-on-chip platforms are described. The advantages of these models to recreate ischaemic hallmarks such as oxygen gradients, pathological alterations of mechanical strength or fibrotic responses are highlighted. The new models represent a step forward to be considered, but unfortunately, we are far away from recapitulating all complexity of the clinical situations. Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |