Autor: |
Kraibut A; Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand.; Sustainable Elastomer Systems, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands., Saiwari S; Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand., Kaewsakul W; Elastomer Technology and Engineering, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands., Noordermeer JWM; Sustainable Elastomer Systems, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands., Sahakaro K; Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand., Dierkes WK; Sustainable Elastomer Systems, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. |
Abstrakt: |
Mixing silica-reinforced rubber for tire tread compounds involves high shear forces and temperatures to obtain a sufficient degree of silanization. Natural Rubber (NR) is sensitive to mastication and chemical reactions, and thus, silica-NR mixing encounters both mechanical and thermal degradation. The present work investigates the degradation phenomena during the mixing of silica-reinforced NR compounds in-depth. The Mooney stress relaxation rates, the dynamic properties with frequency sweep, a novel characterization of branch formation on NR using Δδ values acc. Booij and van Gurp-Palmen plots, together, indicate two major competitive reactions taking place: chain scission or degradation and preliminary cross-linking or branch formation. For masticated pure NR and gum compounds, the viscous responses increase, and the changes in all parameters indicate the dominance of chain scission with increasing dump temperature. It causes molecular weight decrease, broader molecular weight distribution, and branched structures. Different behavior is observed for silica-filled NR compounds in which both physical and chemical cross-links are promoted by silanization and coupling reactions. At high dump temperatures above 150 °C, the results indicate a significant increase in branching due to preliminary cross-linking. These molecular chain modifications that cause network heterogeneity deteriorate the mechanical properties of resulting vulcanizates. |