Asymmetric magnetic proximity interactions in MoSe 2 /CrBr 3 van der Waals heterostructures.

Autor: Choi J; National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, USA., Lane C; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.; Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA., Zhu JX; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.; Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA., Crooker SA; National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM, USA. crooker@lanl.gov.
Jazyk: angličtina
Zdroj: Nature materials [Nat Mater] 2023 Mar; Vol. 22 (3), pp. 305-310. Date of Electronic Publication: 2022 Dec 19.
DOI: 10.1038/s41563-022-01424-w
Abstrakt: Magnetic proximity interactions between atomically thin semiconductors and two-dimensional magnets provide a means to manipulate spin and valley degrees of freedom in non-magnetic monolayers, without using applied magnetic fields 1-3 . In such van der Waals heterostructures, magnetic proximity interactions originate in the nanometre-scale coupling between spin-dependent electronic wavefunctions in the two materials, and typically their overall effect is regarded as an effective magnetic field acting on the semiconductor monolayer 4-8 . Here we demonstrate that magnetic proximity interactions in van der Waals heterostructures can in fact be markedly asymmetric. Valley-resolved reflection spectroscopy of MoSe 2 /CrBr 3 van der Waals structures reveals strikingly different energy shifts in the K and K' valleys of the MoSe 2 due to ferromagnetism in the CrBr 3 layer. Density functional calculations indicate that valley-asymmetric magnetic proximity interactions depend sensitively on the spin-dependent hybridization of overlapping bands and as such are likely a general feature of hybrid van der Waals structures. These studies suggest routes to control specific spin and valley states in monolayer semiconductors 9,10 .
(© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
Databáze: MEDLINE