Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: Cellular and transcriptomic insights.

Autor: Mo J; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Wan MT; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Au DW; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Shi J; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Tam N; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Qin X; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Cheung NKM; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China., Lai KP; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin 541004, China., Winkler C; Department of Biological Sciences, National University of Singapore, 119077, Singapore., Kong RY; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China. Electronic address: bhrkong@cityu.edu.hk., Seemann F; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA. Electronic address: frauke.seemann@tamucc.edu.
Jazyk: angličtina
Zdroj: Journal of environmental sciences (China) [J Environ Sci (China)] 2023 May; Vol. 127, pp. 336-348. Date of Electronic Publication: 2022 May 10.
DOI: 10.1016/j.jes.2022.04.051
Abstrakt: Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022. Published by Elsevier B.V.)
Databáze: MEDLINE