Choline and citicoline ameliorate oxidative stress in acute kidney injury in rats.
Autor: | Baris E, Simsek O, Arici MA, Tosun M |
---|---|
Jazyk: | angličtina |
Zdroj: | Bratislavske lekarske listy [Bratisl Lek Listy] 2023; Vol. 124 (1), pp. 47-52. |
DOI: | 10.4149/BLL_2023_007 |
Abstrakt: | Objectives: The purpose of this study is to investigate the effects of cholinergic anti-inflammatory pathway (CAP)-activating drugs, choline and citicoline (Cytidinediphosphate-choline, CDP-choline), on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) parameters and the contribution of NADPH Oxidase4 (NOX4) p22phox. Background: Endotoxemia induces a systemic inflammatory response characterized by the production of pro-inflammatory mediators and reactive oxygen species (ROS), which eventually develops acute kidney injury (AKI). NADPH Oxidase4 (NOX4) p22phox pathway contributes to the development of endotoxemia-induced AKI. Inflammatory response can be controlled by CAP. Methods: Expressions levels of KIM-1, TNF-α, NOX4, p22phox and NFκB in the kidney tissues of rats were analyzed via RT-PCR in experimental groups; 1. Control, 2. LPS (10 mg/kg) + saline, 3. LPS + CDP-choline (375 mg/kg) and 4. LPS + choline (90 mg/kg). Choline and ROS levels in kidney tissues were also measured by a spectrofluorometric assay. Results: LPS-induced elevations of ROS levels were decreased by CDP-choline or choline administration (p < 0.001). LPS-elevated KIM-1, TNFα, NOX4, p22 phox, and NFκB expressions were significantly decreased by choline or CDP-choline treatments (p < 0.001). Conclusion: Decreased ROS production in kidney tissues in treatment groups suggests that choline or CDP-choline may have therapeutic potential in endotoxemia-associated AKI via downregulating NOX4 and p22phox expressions (Tab. 1, Fig. 5, Ref. 45). Text in PDF www.elis.sk Keywords: endotoxemia, choline, cytidine diphosphate choline, acute kidney injury, reactive oxygen species. |
Databáze: | MEDLINE |
Externí odkaz: |