Potassium isotope heterogeneity in the early Solar System controlled by extensive evaporation and partial recondensation.
Autor: | Hu Y; Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, UMR 7154, Paris, 75005, France. yanhu@ipgp.fr., Moynier F; Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, UMR 7154, Paris, 75005, France. moynier@ipgp.fr., Bizzarro M; Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, UMR 7154, Paris, 75005, France.; StarPlan - Centre for Star and Planet Formation, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark. |
---|---|
Jazyk: | angličtina |
Zdroj: | Nature communications [Nat Commun] 2022 Dec 12; Vol. 13 (1), pp. 7669. Date of Electronic Publication: 2022 Dec 12. |
DOI: | 10.1038/s41467-022-35362-7 |
Abstrakt: | Volatiles are vital ingredients for a habitable planet. Angrite meteorites sample the most volatile-depleted planetesimal in the Solar System, particularly for the alkali elements. They are prime targets for investigating the formation of volatile-poor rocky planets, yet their exceptionally low volatile content presents a major analytical challenge. Here, we leverage improved sensitivity and precision of K isotopic analysis to constrain the mechanism of extreme K depletion (>99.8%) in angrites. In contrast with the isotopically heavy Moon and Vesta, we find that angrites are strikingly depleted in the heavier K isotopes, which is best explained by partial recondensation of vaporized K following extensive evaporation on the angrite parent body (APB) during magma-ocean stage. Therefore, the APB may provide a rare example of isotope fractionation controlled by condensation, rather than evaporation, at a planetary scale. Furthermore, nebula-wide K isotopic variations primarily reflect volatility-driven fractionations instead of presolar nucleosynthetic heterogeneity proposed previously. (© 2022. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |