Autor: |
Zeng YT; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China., Bi LL; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China., Zhuo XF; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China., Yang LY; iHuman Institute, ShanghaiTech University, Shanghai 201210, China., Sun B; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China., Lu JX; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. |
Abstrakt: |
The liquid-liquid phase separation (LLPS) of proteins has been found ubiquitously in eukaryotic cells, and is critical in the control of many biological processes by forming a temporary condensed phase with different bimolecular components. TDP-43 is recruited to stress granules in cells and is the main component of TDP-43 granules and proteinaceous amyloid inclusions in patients with amyotrophic lateral sclerosis (ALS). TDP-43 low complexity domain (LCD) is able to de-mix in solution, forming the protein condensed droplets, and amyloid aggregates would form from the droplets after incubation. The molecular interactions regulating TDP-43 LCD LLPS were investigated at the protein fusion equilibrium stage, when the droplets stopped growing after incubation. We found the molecules in the droplet were still liquid-like, but with enhanced intermolecular helix-helix interactions. The protein would only start to aggregate after a lag time and aggregate slower than at the condition when the protein does not phase separately into the droplets, or the molecules have a reduced intermolecular helix-helix interaction. In the protein condensed droplets, a structural transition intermediate toward protein aggregation was discovered involving a decrease in the intermolecular helix-helix interaction and a reduction in the helicity. Our results therefore indicate that different intermolecular interactions drive LLPS and fibril formation. The discovery that TDP-43 LCD aggregation was faster through the pathway without the first protein phase separation supports that LLPS and the intermolecular helical interaction could help maintain the stability of TDP-43 LCD. |