Diffusion radiomics for subtyping and clustering in autism spectrum disorder: A preclinical study.

Autor: Singh AP; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA., Jain VS; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA., Yu JJ; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA. Electronic address: jp.yu@wisc.edu.
Jazyk: angličtina
Zdroj: Magnetic resonance imaging [Magn Reson Imaging] 2023 Feb; Vol. 96, pp. 116-125. Date of Electronic Publication: 2022 Dec 07.
DOI: 10.1016/j.mri.2022.12.003
Abstrakt: Autism spectrum disorder (ASD) is a highly prevalent, heterogenous neurodevelopmental disorder. Neuroimaging methods such as functional, structural, and diffusion MRI have been used to identify candidate imaging biomarkers for ASD, but current findings remain non-specific and likely arise from the heterogeneity present in ASD. To account for this, efforts to subtype ASD have emerged as a potential strategy for both the study of ASD and advancement of tailored behavioral therapies and therapeutics. Towards these ends, to improve upon current neuroimaging methods, we propose combining biologically sensitive neurite orientation dispersion and density index (NODDI) diffusion MR imaging with radiomics image processing to create a new methodological approach that, we hypothesize, can sensitively and specifically capture neurobiology. We demonstrate this method can sensitively distinguish differences between four genetically distinct rat models of ASD (Fmr1, Pten, Nrxn1, Disc1). Further, we demonstrate diffusion radiomic analyses hold promise for subtyping in ASD as we show unsupervised clustering of NODDI radiomic data generates clusters specific to the underlying genetic differences between the animal models. Taken together, our findings suggest the unique application of radiomic analysis on NODDI diffusion MRI may have the capacity to sensitively and specifically disambiguate the neurobiological heterogeneity present in the ASD population.
(Copyright © 2022 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE