Modelling level I Axillary Lymph Nodes depth for Microwave Imaging.

Autor: Godinho DM; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal. Electronic address: dmgodinho@fc.ul.pt., Silva C; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal., Baleia C; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal., Felício JM; Centro de Investigação Naval (CINAV), Escola Naval, 2810-001 Almada, Portugal; Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal., Castela T; Departamento de Radiologia, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisbon, Portugal., Silva NA; Hospital da Luz Learning Health, Luz Saúde, 1500-650 Lisbon, Portugal., Orvalho ML; Departamento de Radiologia, Hospital da Luz Lisboa, Luz Saúde, 1500-650 Lisbon, Portugal., Fernandes CA; Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal., Conceição RC; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal.
Jazyk: angličtina
Zdroj: Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2022 Dec; Vol. 104, pp. 160-166. Date of Electronic Publication: 2022 Dec 01.
DOI: 10.1016/j.ejmp.2022.11.008
Abstrakt: Purpose: Patient-specific information on the depth of Axillary Lymph Nodes (ALNs) is important for the development of new diagnostic imaging technologies, e.g. Microwave Imaging (MWI), aiming to assess the diagnosis of ALNs during breast cancer staging. Studies about ALNs depth have been presented for treatment planning, but they lack information on sample size and usability of the data to infer the depth of ALNs. The aim of this study was to create a mathematical model that can be used to predict a depth interval where level I ALNs are likely to be located.
Methods: We extracted biometric features of 98 patients who underwent breast Magnetic Resonance Imaging (MRI) to train two types of regression models. We then tested different combination of features to predict ALNs depth and found the best predictor. The final prediction models were then implemented in an algorithm used for MWI and tested with anthropomorphic phantoms of the axillary region.
Results: Body Mass Index (BMI) was the feature with best performance to predict ALNs depth with coefficient of determination (R 2 ) ranging from 0.49 to 0.55 and Root Mean Squared Error (RMSE) ranging from 0.68 to 0.91 cm. The proposed model showed satisfactory results in microwave images of patients with different BMIs.
Conclusions: The presented results contribute to the development of reconstruction algorithms for new imaging technologies and to the assessment of ALNs in other medical applications.
(Copyright © 2022 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE