Longitudinal cardio-respiratory fitness prediction through wearables in free-living environments.
Autor: | Spathis D; Department of Computer Science and Technology, University of Cambridge, Cambridge, UK. ds806@cl.cam.ac.uk., Perez-Pozuelo I; MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK., Gonzales TI; MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK., Wu Y; Department of Computer Science and Technology, University of Cambridge, Cambridge, UK., Brage S; MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK., Wareham N; MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK., Mascolo C; Department of Computer Science and Technology, University of Cambridge, Cambridge, UK. |
---|---|
Jazyk: | angličtina |
Zdroj: | NPJ digital medicine [NPJ Digit Med] 2022 Dec 02; Vol. 5 (1), pp. 176. Date of Electronic Publication: 2022 Dec 02. |
DOI: | 10.1038/s41746-022-00719-1 |
Abstrakt: | Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO (© 2022. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |