Application of artificial intelligence to imaging interpretations in the musculoskeletal area: Where are we? Where are we going?

Autor: Bousson V; Service de radiologie ostéoarticulaire, hôpital Lariboisière, AP-HP Nord-université Paris Cité, 75010 Paris, France; Laboratoire B3OA, CNRS UMR 7052, Paris, France. Electronic address: valerie.bousson@aphp.fr., Benoist N; Service de radiologie ostéoarticulaire, hôpital Lariboisière, AP-HP Nord-université Paris Cité, 75010 Paris, France; Laboratoire B3OA, CNRS UMR 7052, Paris, France., Guetat P; Service de radiologie ostéoarticulaire, hôpital Lariboisière, AP-HP Nord-université Paris Cité, 75010 Paris, France; Laboratoire B3OA, CNRS UMR 7052, Paris, France., Attané G; Service de radiologie ostéoarticulaire, hôpital Lariboisière, AP-HP Nord-université Paris Cité, 75010 Paris, France; Laboratoire B3OA, CNRS UMR 7052, Paris, France., Salvat C; Department of Medical Physics, hôpital Lariboisière, AP-HP Nord-université Paris Cité, Paris, France., Perronne L; Service de radiologie ostéoarticulaire, hôpital Lariboisière, AP-HP Nord-université Paris Cité, 75010 Paris, France; Laboratoire B3OA, CNRS UMR 7052, Paris, France.
Jazyk: angličtina
Zdroj: Joint bone spine [Joint Bone Spine] 2023 Jan; Vol. 90 (1), pp. 105493. Date of Electronic Publication: 2022 Nov 21.
DOI: 10.1016/j.jbspin.2022.105493
Abstrakt: The interest of researchers, clinicians and radiologists, in artificial intelligence (AI) continues to grow. Deep learning is a subset of machine learning, in which the computer algorithm itself can determine the optimal imaging features to answer a clinical question. Convolutional neural networks are the most common architecture for performing deep learning on medical images. The various musculoskeletal applications of deep learning are the detection of abnormalities on X-rays or cross-sectional images (CT, MRI), for example the detection of fractures, meniscal tears, anterior cruciate ligament tears, degenerative lesions of the spine, bone metastases, classification of e.g., dural sac stenosis, degeneration of intervertebral discs, assessment of skeletal age, and segmentation, for example of cartilage. Software developments are already impacting the daily practice of orthopedic imaging by automatically detecting fractures on radiographs. Improving image acquisition protocols, improving the quality of low-dose CT images, reducing acquisition times in MRI, or improving MR image resolution is possible through deep learning. Deep learning offers an automated way to offload time-consuming manual processes and improve practitioner performance. This article reviews the current state of AI in musculoskeletal imaging.
(Copyright © 2022 Société française de rhumatologie. Published by Elsevier Masson SAS. All rights reserved.)
Databáze: MEDLINE