In-silico docking platform with serine protease inhibitor (SERPIN) structures identifies host cysteine protease targets with significance for SARS-CoV-2.

Autor: Rodriguez Galvan JJ, de Vries M, Belblidia S, Fisher A, Prescott RA, Crosse KM, Mangel WF, Duerr R, Dittmann M
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2024 Mar 27. Date of Electronic Publication: 2024 Mar 27.
DOI: 10.1101/2022.11.18.517133
Abstrakt: Serine Protease Inhibitors (SERPINs) regulate protease activity in various physiological processes such as inflammation, cancer metastasis, angiogenesis, and neurodegenerative diseases. However, their potential in combating viral infections, where proteases are also crucial, remains underexplored. This is due to our limited understanding of SERPIN expression during viral-induced inflammation and of the SERPINs' full spectrum of target proteases. Here, we demonstrate widespread expression of human SERPINs in response to respiratory virus infections, both in vitro and in vivo , alongside classical antiviral effectors. Through comprehensive in-silico docking with full-length SERPIN and protease 3D structures, we confirm known inhibitors of specific proteases; more importantly, the results predict novel SERPIN-protease interactions. Experimentally, we validate the direct inhibition of key proteases essential for viral life cycles, including the SERPIN PAI-1's capability to inhibit select cysteine proteases such as cathepsin L, and the serine protease TMPRSS2. Consequently, PAI-1 suppresses spike maturation and multi-cycle SARS-CoV-2 replication. Our findings challenge conventional notions of SERPIN selectivity, underscore the power of in-silico docking for SERPIN target discovery, and offer potential therapeutic interventions targeting host proteolytic pathways to combat viruses with urgent unmet therapeutic needs.
Significance: Serine protease inhibitors (SERPINs) play crucial roles in various physiological processes, including viral infections. However, our comprehension of the full array of proteases targeted by the SERPIN family has traditionally been limited, hindering a comprehensive understanding of their regulatory potential. We developed an in-silico docking platform to identify new SERPIN target proteases expressed in the respiratory tract, a critical viral entry portal. The platform confirmed known and predicted new targets for every SERPIN examined, shedding light on previously unrecognized patterns in SERPIN selectivity. Notably, both key proteases for SARS-CoV-2 maturation were among the newly predicted targets, which we validated experimentally. This underscores the platform's potential in uncovering targets with significance in viral infections, paving the way to define the full potential of the SERPIN family in infectious disease and beyond.
Databáze: MEDLINE