Modelling changes in glass transition temperature in polymer matrices exposed to low molecular weight penetrants.

Autor: Baldanza A; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy., Loianno V; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy., Mensitieri G; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy., Scherillo G; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.
Jazyk: angličtina
Zdroj: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences [Philos Trans A Math Phys Eng Sci] 2023 Jan 09; Vol. 381 (2240), pp. 20210216. Date of Electronic Publication: 2022 Nov 21.
DOI: 10.1098/rsta.2021.0216
Abstrakt: Polymer matrices, when placed in contact with a fluid phase made of low molecular weight compounds, undergo a depression of their glass transition temperature ( T g ) determined by the absorption of these compounds and the associated plasticization phenomena. Frequently, this effect is coupled with the mechanical action of the compressive stress exerted by the pressure of the fluid phase that, in contrast, promotes an increase in the T g . This issue is relevant for technological and structural applications of composites with high-performance glassy polymer matrices, due to their significant impact on mechanical properties. We propose an approach to model and predict rubbery-glassy states maps of polymer-penetrant mixtures as a function of pressure and temperature based on the Gibbs-Di Marzio criterion. This criterion establishes that a 'thermodynamic' glass transition does occur when the configurational entropy of the system vanishes. Although questioned and criticized, this criterion constitutes a good practical approach to analyse changes of T g and, in some way, reflects the idea of an 'entropy catastrophe' occurring at the glass transition. Several polymer-penetrant systems have been analysed modelling configurational entropy by means of the Non-Random Hydrogen Bond lattice fluid theory, able to cope with possible non-random mixing and occurrence of strong interactions. This article is part of the theme issue 'Ageing and durability of composite materials'.
Databáze: MEDLINE