In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy.

Autor: Bajrami D; Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany., Fischer S; Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany., Barth H; Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany., Sarquis MA; Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain., Ladero VM; Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain., Fernández M; Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain., Sportelli MC; Chemistry Department, University of Bari ''Aldo Moro', V. Orabona, 4, 70126, Bari, Italy., Cioffi N; Chemistry Department, University of Bari ''Aldo Moro', V. Orabona, 4, 70126, Bari, Italy., Kranz C; Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany., Mizaikoff B; Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany. boris.mizaikoff@uni-ulm.de.
Jazyk: angličtina
Zdroj: NPJ biofilms and microbiomes [NPJ Biofilms Microbiomes] 2022 Nov 19; Vol. 8 (1), pp. 92. Date of Electronic Publication: 2022 Nov 19.
DOI: 10.1038/s41522-022-00353-5
Abstrakt: Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm -1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
(© 2022. The Author(s).)
Databáze: MEDLINE