Multigenic regulation in the ethylene biosynthesis pathway during coffee flowering.

Autor: Santos IS; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Ribeiro THC; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., de Oliveira KKP; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Dos Santos JO; Minas Gerais Agricultural Research Company, EPAMIG, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Moreira RO; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Lima RR; Statistics Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Lima AA; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil., Chalfun-Junior A; Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx., Postal 3037, Lavras, Minas Gerais 37200-900 Brazil.
Jazyk: angličtina
Zdroj: Physiology and molecular biology of plants : an international journal of functional plant biology [Physiol Mol Biol Plants] 2022 Sep; Vol. 28 (9), pp. 1657-1669. Date of Electronic Publication: 2022 Oct 18.
DOI: 10.1007/s12298-022-01235-y
Abstrakt: Ethylene regulates different aspects of the plant's life cycle, such as flowering, and acts as a defense signal in response to environmental stresses. Changes induced by water deficit (WD) in gene expression of the main enzymes involved in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and oxidase (ACO), are frequently reported in plants. In this study, coffee ( Coffea arabica ) ACS and ACO family genes were characterized and their expression profiles were analyzed in leaves, roots, flower buds, and open flowers from plants under well-watered (WW) and water deficit (WD) conditions. Three new ACS genes were identified. Water deficit did not affect ACS expression in roots, however soil drying strongly downregulated ACO expression, indicating a transcriptional constraint in the biosynthesis pathway during the drought that can suppress ethylene production in roots. In floral buds, ACO expression is water-independent, suggesting a higher mechanism of control in reproductive organs during the final flowering stages. Leaves may be the main sites for ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) production in the shoot under well-watered conditions, contributing to an increase in the ethylene levels required for anthesis. Given these results, we suggest a possible regulatory mechanism for the ethylene biosynthesis pathway associated with coffee flowering with gene regulation in leaves being a key point in ethylene production and ACO genes play a major regulatory role in roots and the shoots. This mechanism may constitute a regulatory model for flowering in other woody species.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01235-y.
Competing Interests: Conflict of interestThe authors declare that they have no conflict of interest.
(© Prof. H.S. Srivastava Foundation for Science and Society 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
Databáze: MEDLINE