Counterintuitive structural and functional effects due to naturally occurring mutations targeting the active site of the disease-associated NQO1 enzyme.
Autor: | Pacheco-García JL; Departamento de Química Física, Universidad de Granada, Spain., Anoz-Carbonell E; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Spain., Loginov DS; Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic., Kavan D; Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic., Salido E; Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, Tenerife, Spain., Man P; Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic., Medina M; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Spain., Pey AL; Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain. |
---|---|
Jazyk: | angličtina |
Zdroj: | The FEBS journal [FEBS J] 2023 Apr; Vol. 290 (7), pp. 1855-1873. Date of Electronic Publication: 2022 Nov 25. |
DOI: | 10.1111/febs.16677 |
Abstrakt: | Our knowledge on the genetic diversity of the human genome is exponentially growing. However, our capacity to establish genotype-phenotype correlations on a large scale requires a combination of detailed experimental and computational work. This is a remarkable task in human proteins which are typically multifunctional and structurally complex. In addition, mutations often prevent the determination of mutant high-resolution structures by X-ray crystallography. We have characterized here the effects of five mutations in the active site of the disease-associated NQO1 protein, which are found either in cancer cell lines or in massive exome sequencing analysis in human population. Using a combination of H/D exchange, rapid-flow enzyme kinetics, binding energetics and conformational stability, we show that mutations in both sets may cause counterintuitive functional effects that are explained well by their effects on local stability regarding different functional features. Importantly, mutations predicted to be highly deleterious (even those affecting the same protein residue) may cause mild to catastrophic effects on protein function. These functional effects are not well explained by current predictive bioinformatic tools and evolutionary models that account for site conservation and physicochemical changes upon mutation. Our study also reinforces the notion that naturally occurring mutations not identified as disease-associated can be highly deleterious. Our approach, combining protein biophysics and structural biology tools, is readily accessible to broadly increase our understanding of genotype-phenotype correlations and to improve predictive computational tools aimed at distinguishing disease-prone against neutral missense variants in the human genome. (© 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |