Characterization of novel antibodies that recognize sialylated keratan sulfate and lacto-N-fucopentaose I on human induced pluripotent cells: comparison with existing antibodies.
Autor: | Nakao H; Glycobiotechnology Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan., Yamaguchi T; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka 567-0085, Japan., Kawabata K; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka 567-0085, Japan., Higashi K; Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan., Nonaka M; Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho 53, Sakyo-ku, Kyoto, Kyoto 606-8507, Japan., Tuiji M; Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan., Nagai Y; Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan., Toyoda H; Laboratory of Bio-analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan., Yamaguchi Y; Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Aobaku, Sendai, Miyagi 981-8558, Japan., Kawasaki N; Glycobiotechnology Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan., Kawasaki T; Glycobiotechnology Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan.; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi 7-6-8, Ibaraki, Osaka 567-0085, Japan. |
---|---|
Jazyk: | angličtina |
Zdroj: | Glycobiology [Glycobiology] 2023 Mar 06; Vol. 33 (2), pp. 150-164. |
DOI: | 10.1093/glycob/cwac074 |
Abstrakt: | This report describes the isolation and characterization of two new antibodies, R-6C (IgM) and R-13E (IgM), which were generated in C57BL/6 mice (Mus musculus) using the Tic (JCRB1331) human induced pluripotent cell (hiPSC) line as an antigen, and their comparisons with two existing antibodies, R-10G (IgG1) and R-17F (IgG1). Their epitopes were studied by western blotting after various glycosidase digestions, binding analyses using enzyme-linked immunosorbent assays (ELISAs) and microarrays with various synthetic oligosaccharides. The minimum epitope structures identified were: Siaα2-3Galβ1-3GlcNAc(6S)β1-3Galβ1-4GlcNAc(6S)β1 (R-6C), Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1 (R-13E), Galβ1-4GlcNAc(6S)β1-3Galβ1-4GlcNAc(6S)β1 (R-10G), and Fucα1-2Galβ1-3GlcNAβ1-3Galβ1-4Glc (lacto-N-fucopentaose I) (R-17F). Most glycoprotein epitopes are expressed as O-glycans. The common feature of these epitopes is the presence of an N-acetyllactosamine type 1 structure (Galβ1-3GlcNAc) at their nonreducing termini, followed by a type 2 structure (Galβ1-4GlcNAc); this arrangement comprises a type 1-type 2 motif. This motif is also shared by TRA-1-60, a traditional onco-fetal antigen. In contrast, the R-10G epitope has a type 2-type 2 motif. Among these antibodies, R-17F and R-13E exhibit cytotoxic activity toward hiPSCs. R-17F and R-13E exhibit extremely high similarity in the amino acid sequences in their complementarity-determining regions (CDRs), which is consistent with their highly similar glycan recognition. These antibodies are excellent tools for investigating the biological functions of glycoconjugates in hiPSCs/hESCs; they could be useful for the selection, isolation and selective killing of such undifferentiated pluripotent stem cells. (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.) |
Databáze: | MEDLINE |
Externí odkaz: |