Bone surface mimicked PDMS membranes stimulate osteoblasts and calcification of bone matrix.
Autor: | Erenay B; Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey., Sağlam ASY; Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey., Garipcan B; Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey., Jandt KD; Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University, Jena 07743, Germany. Electronic address: k.jandt@uni-jena.de., Odabaş S; Biomaterials and Tissue Engineering Laboratory (BteLAB), Faculty of Science, Department of Chemistry, Ankara University, 06560, Turkey; Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey. Electronic address: odabas@ankara.edu.tr. |
---|---|
Jazyk: | angličtina |
Zdroj: | Biomaterials advances [Biomater Adv] 2022 Nov; Vol. 142, pp. 213170. Date of Electronic Publication: 2022 Oct 24. |
DOI: | 10.1016/j.bioadv.2022.213170 |
Abstrakt: | Cellular microenvironments play a crucial role in cell behavior. In addition to the biochemical cues present in the microenvironments, biophysical and biomechanical properties on surfaces have an impact on cellular functionality and eventually cellular fate. Effects of surface topography on cell behavior are being studied extensively in the literature. However, these studies often try to replicate topographical features of tissue surfaces by using techniques such as chemical etching, photolithography, and electrospinning, which may result in the loss of crucial micro- and nano- features on the tissue surfaces such as bone. This study investigates the topographical effects of bone surface by transferring its surface features onto polydimethylsiloxane (PDMS) membranes using soft lithography from a bovine femur. Our results have shown that major features on bone surfaces were successfully transferred onto PDMS using soft lithography. Osteoblast proliferation and calcification of bone matrix have significantly increased along with osteoblast-specific differentiation and maturation markers such as osteocalcin (OSC), osterix (OSX), collagen type I alpha 1 chain (COL1A1), and alkaline phosphatase (ALP) on bone surface mimicked (BSM) PDMS membranes in addition to a unidirectional alignment of osteoblast cells compared to plain PDMS surfaces. This presented bone surface mimicking method can provide a versatile native-like platform for further investigation of intracellular pathways regarding osteoblast growth and differentiation. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2022. Published by Elsevier B.V.) |
Databáze: | MEDLINE |
Externí odkaz: |