Evaluation of the Sources, Precursors, and Processing of Aerosols at a High-Altitude Tropical Site.

Autor: Dominutti PA; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France.; Université Grenoble Alpes, UMR 5001, CNRS, IRD, Institut des Géosciences de l'Environnement (IGE), Grenoble 38400, France., Chevassus E; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., Baray JL; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., Jaffrezo JL; Université Grenoble Alpes, UMR 5001, CNRS, IRD, Institut des Géosciences de l'Environnement (IGE), Grenoble 38400, France., Borbon A; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., Colomb A; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., Deguillaume L; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., El Gdachi S; Laboratoire d'Aérologie (LAERO), UMR 5560, Toulouse 31400, France.; Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR 8105, Université de la Réunion, Saint-Denis de La Réunion 97744, France., Houdier S; Université Grenoble Alpes, UMR 5001, CNRS, IRD, Institut des Géosciences de l'Environnement (IGE), Grenoble 38400, France., Leriche M; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France.; Centre pour l'étude et la simulation du climat à l'échelle régionale, Département des sciences de la terre et de l'atmosphère (ESCER), Université du Québec à Montréal, Montréal H2X 3Y7, Canada., Metzger JM; Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR 8105, Université de la Réunion, Saint-Denis de La Réunion 97744, France., Rocco M; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France.; Laboratoire de l'Atmosphère et des Cyclones (LACy), UMR 8105, Université de la Réunion, Saint-Denis de La Réunion 97744, France., Tulet P; Laboratoire d'Aérologie (LAERO), UMR 5560, Toulouse 31400, France., Sellegri K; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France., Freney E; Université Clermont-Auvergne, CNRS, UMR 6016, Laboratoire de Météorologie Physique (LaMP), Clermont-Ferrand 63000, France.
Jazyk: angličtina
Zdroj: ACS earth & space chemistry [ACS Earth Space Chem] 2022 Oct 20; Vol. 6 (10), pp. 2412-2431. Date of Electronic Publication: 2022 Sep 12.
DOI: 10.1021/acsearthspacechem.2c00149
Abstrakt: This work presents the results from a set of aerosol- and gas-phase measurements collected during the BIO-MAÏDO field campaign in Réunion between March 8 and April 5, 2019. Several offline and online sampling devices were installed at the Maïdo Observatory (MO), a remote high-altitude site in the Southern Hemisphere, allowing the physical and chemical characterization of atmospheric aerosols and gases. The evaluation of short-lived gas-phase measurements allows us to conclude that air masses sampled during this period contained little or no anthropogenic influence. The dominance of sulfate and organic species in the submicron fraction of the aerosol is similar to that measured at other coastal sites. Carboxylic acids on PM 10 showed a significant contribution of oxalic acid, a typical tracer of aqueous processed air masses, increasing at the end of the campaign. This result agrees with the positive matrix factorization analysis of the submicron organic aerosol, where more oxidized organic aerosols (MOOAs) dominated the organic aerosol with an increasing contribution toward the end of the campaign. Using a combination of air mass trajectories (model predictions), it was possible to assess the impact of aqueous phase processing on the formation of secondary organic aerosols (SOAs). Our results show how specific chemical signatures and physical properties of air masses, possibly affected by cloud processing, can be identified at Réunion. These changes in properties are represented by a shift in aerosol size distribution to large diameters and an increased contribution of secondary sulfate and organic aerosols after cloud processing.
Competing Interests: The authors declare no competing financial interest.
(© 2022 The Authors. Published by American Chemical Society.)
Databáze: MEDLINE