Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics.

Autor: Pauwels MJ; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Xie J; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Ceroi A; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Balusu S; VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000, Leuven, Belgium., Castelein J; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Van Wonterghem E; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Van Imschoot G; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Ward A; Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK., Menheniott TR; Murdoch Children's Research Institute, Flemington Rd. Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Flemington Rd. Parkville, Melbourne, Victoria, Australia., Gustafsson O; Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden., Combes F; Department of Biotechnology and Nanomedicine, SINTEF AS, Sem Sælands V. 2A, N-7034 Trondheim, Norway., El Andaloussi S; Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden., Sanders NN; Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium., Mäger I; Institute of Technology, University of Tartu, 50 411, Tartu, Estonia; Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK., Van Hoecke L; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium., Vandenbroucke RE; VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. Electronic address: roosmarijn.vandenbroucke@irc.vib-ugent.be.
Jazyk: angličtina
Zdroj: Biomaterials [Biomaterials] 2022 Nov; Vol. 290, pp. 121830. Date of Electronic Publication: 2022 Oct 06.
DOI: 10.1016/j.biomaterials.2022.121830
Abstrakt: The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the blood-cerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022. Published by Elsevier Ltd.)
Databáze: MEDLINE