Direct Synthesis of HKUST-1 onto Cotton Fabrics and Properties.

Autor: da Costa BL; Textile Engineering Coordination (COENT), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Rosa ILAA; Chemistry Coordination (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Silva VH; Chemistry Coordination (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Wu Q; Institute of Textile Research and Cooperation of Terrassa, Polytechnic University of Catalonia, C/Colom 15, 08222 Terrassa, Barcelona, Spain., Samulewski RB; Chemistry Coordination (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Scacchetti FAP; Textile Engineering Coordination (COENT), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Moisés MP; Chemistry Coordination (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil., Lis MJ; Institute of Textile Research and Cooperation of Terrassa, Polytechnic University of Catalonia, C/Colom 15, 08222 Terrassa, Barcelona, Spain., Bezerra FM; Textile Engineering Coordination (COENT), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Apucarana, 635 Marcilio Dias St., Apucarana 86812-60, Brazil.
Jazyk: angličtina
Zdroj: Polymers [Polymers (Basel)] 2022 Oct 11; Vol. 14 (20). Date of Electronic Publication: 2022 Oct 11.
DOI: 10.3390/polym14204256
Abstrakt: Metal-organic frameworks are crystalline nanostructures formed by a metal interspersed by an organic binder. These metal-organic materials are examples of nanomaterials applied to textile material in search of new functionalized textiles. Cotton is a cellulosic fiber of great commercial importance, and has good absorption capacity and breathability; however, due to these characteristics, it is susceptible to the development of microorganisms on its surface. This work aims to analyze how the direct synthesis of HKUST-1 in cotton fabric modifies the chemical and physical properties. The material obtained was characterized by scanning electron microscopy to obtain its morphology, by spectrophotometry CIE L*a*b* to verify the color change, by a biological test to verify its resistance to microorganisms and, finally, by a unidirectional traction test to verify the change in its mechanical resistance. Thereby, it was possible to observe the formation of MOFs with the morphology of nanorods, and also, with regard to HKUST-1 in the cotton fabric, when applied, an elimination percentage higher than 99% was observed for both bacteria, E. coli and S. aureus . The presence of MOF was detected even after washing, however, the loss of 75% in the mechanical resistance of the material makes its potential for textile finishing unworkable.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje