Abstrakt: |
AbstractThe G matrix, which quantifies the genetic architecture of traits, is often viewed as an evolutionary constraint. However, G can evolve in response to selection and may also be viewed as a product of adaptive evolution. Convergent evolution of G in similar environments would suggest that G evolves adaptively, but it is difficult to disentangle such effects from phylogeny. Here, we use the adaptive radiation of Anolis lizards to ask whether convergence of G accompanies the repeated evolution of habitat specialists, or ecomorphs, across the Greater Antilles. We measured G in seven species representing three ecomorphs (trunk-crown, trunk-ground, and grass-bush). We found that the overall structure of G does not converge. Instead, the structure of G is well conserved and displays a phylogenetic signal consistent with Brownian motion. However, several elements of G showed signatures of convergence, indicating that some aspects of genetic architecture have been shaped by selection. Most notably, genetic correlations between limb traits and body traits were weaker in long-legged trunk-ground species, suggesting effects of recurrent selection on limb length. Our results demonstrate that common selection pressures may have subtle but consistent effects on the evolution of G , even as its overall structure remains conserved. |