Changes in soil organic matter molecular structure after five-years mimicking climate change scenarios in a Mediterranean savannah.

Autor: San-Emeterio LM; Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain; Universidad de Sevilla, MED Soil Res. Group, Dpt. Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain., Jiménez-Morillo NT; University of Évora, Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), Núcleo da Mitra, Ap. 94, 7006-554 Évora, Portugal., Pérez-Ramos IM; Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain., Domínguez MT; Universidad de Sevilla, MED Soil Res. Group, Dpt. Cristalografía, Mineralogía y Química Agrícola, Facultad de Química, C/Prof Garcia Gonzalez 1, 41012 Sevilla, Spain., González-Pérez JA; Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain. Electronic address: jag@irnase.csic.es.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2023 Jan 20; Vol. 857 (Pt 1), pp. 159288. Date of Electronic Publication: 2022 Oct 08.
DOI: 10.1016/j.scitotenv.2022.159288
Abstrakt: Mediterranean savannahs (dehesas) are agro-sylvo-pastoral systems with a marked seasonality, with severe summer drought and favourable rainy spring and autumn. These conditions are forecasted to become more extreme due to the ongoing global climate change. Under such conditions, it is key to understand soil organic matter (SOM) dynamics at a molecular level. Here, analytical pyrolysis (Py-GC/MS) combined with chemometric statistical approaches was used for the molecular characterization of SOM in a five-years field manipulative experiment of single and combined rainfall exclusion (drought) and increased temperature (warming). The results indicate that SOM molecular composition in dehesas is mainly determined by the effect of the tree canopy. After only five years of the climatic experiment, the differences caused by the warming, drought and the combination of warming+drought forced climate scenarios became statistically significant with respect to the untreated controls, notably in the open pasture habitat. The climatic treatments mimicking foreseen climate changes affected mainly the lignocellulose dynamics, but also other SOM compounds (alkanes, fatty acids, isoprenoids and nitrogen compounds) pointing to accelerated humification processes and SOM degradation when soils are under warmer and dryer conditions. Therefore, it is expected that, in the short term, the foreseen climate change scenarios will exert changes in the Mediterranean savannah SOM molecular structure and in its dynamic.
Competing Interests: Declaration of competing interest The authors declare that there is no conflict of interest for this research: no known competing financial interests or personal relationships had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
(Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE