Autor: |
Kuan MI; Department of Biological Sciences and Center for Reproductive Biology, University of Idahogrid.266456.5, Moscow, Idaho, USA., Caruso LB; The Wistar Institute, Philadelphia, Pennsylvania, USA., Zavala AG; Department of Biological Sciences and Center for Reproductive Biology, University of Idahogrid.266456.5, Moscow, Idaho, USA., Rana PSJB; Department of Biological Sciences and Center for Reproductive Biology, University of Idahogrid.266456.5, Moscow, Idaho, USA., O'Dowd JM; Department of Biological Sciences and Center for Reproductive Biology, University of Idahogrid.266456.5, Moscow, Idaho, USA., Tempera I; The Wistar Institute, Philadelphia, Pennsylvania, USA., Fortunato EA; Department of Biological Sciences and Center for Reproductive Biology, University of Idahogrid.266456.5, Moscow, Idaho, USA. |
Abstrakt: |
Nidogen 1 (NID1) is an important basement membrane protein secreted by many cell types. We previously found that human cytomegalovirus (HCMV) infection rapidly induced chromosome 1 breaks and that the basement membrane protein NID1, encoded near the 1q42 break site, was downregulated. We have now determined that the specific breaks in and of themselves did not regulate NID1, rather interactions between several viral proteins and the cellular machinery and DNA regulated NID1. We screened a battery of viral proteins present by 24 hours postinfection (hpi) when regulation was induced, including components of the incoming virion and immediate early (IE) proteins. Adenovirus (Ad) delivery of the tegument proteins pp71 and UL35 and the IE protein IE1 influenced steady-state (ss) NID1 levels. IE1's mechanism of regulation was unclear, while UL35 influenced proteasomal regulation of ss NID1. Real-time quantitative PCR (RT-qPCR) experiments determined that pp71 downregulated NID1 transcription. Surprisingly, WF28-71, a fibroblast clone that expresses minute quantities of pp71, suppressed NID1 transcription as efficiently as HCMV infection, resulting in the near absence of ss NID1. Sequence analysis of the region surrounding the 1q42 break sites and NID1 promoter revealed CCCTC-binding factor (CTCF) binding sites. Chromatin immunoprecipitation experiments determined that pp71 and CTCF were both bound at these two sites during HCMV infection. Expression of pp71 alone replicated this binding. Binding was observed as early as 1 hpi, and colocalization of pp71 and CTCF occurred as quickly as 15 min postinfection (pi) in infected cell nuclei. In fibroblasts where CTCF was knocked down, Adpp71 infection did not decrease NID1 transcription nor ss NID1 protein levels. Our results emphasize another aspect of pp71 activity during infection and identify this viral protein as a key contributor to HCMV's efforts to eliminate NID1. Further, we show, for the first time, direct interaction between pp71 and the cellular genome. IMPORTANCE We have found that human cytomegalovirus (HCMV) utilizes multiple viral proteins in multiple pathways to regulate a ubiquitous cellular basement membrane protein, nidogen-1 (NID1). The extent of the resources and the redundant methods that the virus has evolved to affect this control strongly suggest that its removal provides a life cycle advantage to HCMV. Our discoveries that one of the proteins that HCMV uses to control NID1, pp71, binds directly to the cellular DNA and can exert control when present in vanishingly small quantities may have broad implications in a wide range of infection scenarios. Dysregulation of NID1 in an immunocompetent host is not known to manifest complications during infection; however, in the naive immune system of a developing fetus, disruption of this developmentally critical protein could initiate catastrophic HCMV-induced birth defects. |