Deep-Learning Model Based on Convolutional Neural Networks to Classify Apnea-Hypopnea Events from the Oximetry Signal.

Autor: Vaquerizo-Villar F; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. fernando.vaquerizo@gib.tel.uva.es.; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain. fernando.vaquerizo@gib.tel.uva.es., Álvarez D; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain.; Pneumology Service, Río Hortega University Hospital, Valladolid, Spain., Gutiérrez-Tobal GC; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain., Arroyo-Domingo CA; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain.; Pneumology Service, Río Hortega University Hospital, Valladolid, Spain., Del Campo F; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain.; Pneumology Service, Río Hortega University Hospital, Valladolid, Spain., Hornero R; Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, Spain.
Jazyk: angličtina
Zdroj: Advances in experimental medicine and biology [Adv Exp Med Biol] 2022; Vol. 1384, pp. 255-264.
DOI: 10.1007/978-3-031-06413-5_15
Abstrakt: Automated analysis of the blood oxygen saturation (SpO 2 ) signal from nocturnal oximetry has shown usefulness to simplify the diagnosis of obstructive sleep apnea (OSA), including the detection of respiratory events. However, the few preceding studies using SpO 2 recordings have focused on the automated detection of respiratory events versus normal respiration, without making any distinction between apneas and hypopneas. In this sense, the characteristics of oxygen desaturations differ between obstructive apnea and hypopnea episodes. In this chapter, we use the SpO 2 signal along with a convolutional neural network (CNN)-based deep-learning architecture for the automatic identification of apnea and hypopnea events. A total of 398 SpO 2 signals from adult OSA patients were used for this purpose. A CNN architecture was trained using 30-s epochs from the SpO 2 signal for the automatic classification of three classes: normal respiration, apnea, and hypopnea. Then, the apnea index (AI), the hypopnea index (HI), and the apnea-hypopnea index (AHI) were obtained by aggregating the outputs of the CNN for each subject (AI CNN , HI CNN , and AHI CNN ). This model showed a promising diagnostic performance in an independent test set, with 80.3% 3-class accuracy and 0.539 3-class Cohen's kappa for the classification of respiratory events. Furthermore, AI CNN , HI CNN , and AHI CNN showed a high agreement with the values obtained from the standard PSG: 0.8023, 0.6774, and 0.8466 intra-class correlation coefficients (ICCs), respectively. This suggests that CNN can be used to analyze SpO 2 recordings for the automated diagnosis of OSA in at-home oximetry tests.
(© 2022. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
Databáze: MEDLINE