Ab initio molecular dynamics investigation of the co-adsorption of iodine species with CO and H 2 O in silver-exchanged chabazite.

Autor: Ayadi T; Laboratoire de Physique et Chimie Théoriques (LPCT, UMR CNRS UL 7019), Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Cedex, France. tarek.ayadi@univ-lorraine.fr., Lebègue S; Laboratoire de Physique et Chimie Théoriques (LPCT, UMR CNRS UL 7019), Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Cedex, France. tarek.ayadi@univ-lorraine.fr., Badawi M; Laboratoire de Physique et Chimie Théoriques (LPCT, UMR CNRS UL 7019), Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, Cedex, France. tarek.ayadi@univ-lorraine.fr.
Jazyk: angličtina
Zdroj: Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2022 Oct 19; Vol. 24 (40), pp. 24992-24998. Date of Electronic Publication: 2022 Oct 19.
DOI: 10.1039/d2cp02267b
Abstrakt: In the field of nuclear energy, there is particular interest for the trapping of harmful iodine species (I 2 and CH 3 I) that could be released during a nuclear accident, due to their dangereous impact on the human metabolic processes and the environment. Here, the adsorption of these iodine molecules versus several inhibitory compounds (CO, H 2 O, CH 3 Cl and Cl 2 ) in the silver exchanged chabazite zeolite is studied in detail using ab initio molecular dynamics simulations at a realistic temperature and composition. Interestingly, we found that the iodine molecules remain attached to the cations even when the number of water molecules inside the structure is greater than two times the number of cations per cell at T = 413 K. For CO, we found that CH 3 I is more perturbed than I 2 by the presence of this inhibitor. Overall, our results indicate that the silver-exchanged chabazite zeolite is a promising candidate to trap iodine species in the case of a severe nuclear accident.
Databáze: MEDLINE