Characterizing sensory thresholds and intensity sensitivity of Regenerative Peripheral Nerve Interfaces: A Case Study .

Autor: Gonzalez MA, Vu PP, Vaskov AK, Cederna PS, Chestek CA, Gates DH
Jazyk: angličtina
Zdroj: IEEE ... International Conference on Rehabilitation Robotics : [proceedings] [IEEE Int Conf Rehabil Robot] 2022 Jul; Vol. 2022, pp. 1-6.
DOI: 10.1109/ICORR55369.2022.9896481
Abstrakt: Current prosthetic limbs offer little to no sensory feedback. Developments in peripheral nerve interfaces provide opportunities to restore some level of tactile feedback that is referred to the prosthetic limb. One such method is a Regenerative Peripheral Nerve Interface (RPNI), composed of a muscle graft wrapped around a free nerve ending. Here, we characterize perception and discomfort thresholds, as well as sensitivity to stimulation through two-alternative forced choice discrimination tasks. One person with transradial amputation who had one RPNI constructed from the median nerve and two constructed from the ulnar nerve participated. Average perception thresholds across all RPNIs were between 950 and 1120 nC with variance of less than 350 nC over a 36-month period. Discomfort thresholds were from 3880 nC to 9770 nC across all RPNIs. The just noticeable difference for the Median RPNI was 520 nC, larger than either the Ulnar-1 or Ulnar-2 RPNIs (210 nC, 470 nC, respectively). We also calculated Weber fractions to compare sensitivity between different RPNIs and relate our results to previous studies. Weber fractions for each of the Median, Ulnar-1, and Ulnar-2 RPNIs were 0.134, 0.088, 0.087, respectively. This work is the first to quantify the functional stimulation range and sensitivity of RPNIs in a human participant. Future work will focus on characterizing RPNI sensation in additional individuals to determine if these findings are generalizable to the amputee population.
Databáze: MEDLINE