Impact of food preservatives based on immobilized phenolic compounds on an in vitro model of human gut microbiota.

Autor: Ruiz-Rico M; Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain. Electronic address: maruiri@etsia.upv.es., Renwick S; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada., Vancuren SJ; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada., Robinson AV; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada., Gianetto-Hill C; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada., Allen-Vercoe E; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada., Barat JM; Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain.
Jazyk: angličtina
Zdroj: Food chemistry [Food Chem] 2023 Mar 01; Vol. 403, pp. 134363. Date of Electronic Publication: 2022 Sep 25.
DOI: 10.1016/j.foodchem.2022.134363
Abstrakt: To address concerns about the biocompatibility of novel phenolic immobilization-based food preservatives, their impact on the composition and metabonomic profile of a defined community of human gut microbiota was evaluated. Three phenolics (eugenol, vanillin and ferulic acid) presented in two forms (free or immobilized on different supports) were tested at two concentration levels (0.5 and 2 mg/mL). Free eugenol was the phenolic with the greatest impact on gut microbiota, with a remarkable increase in the abundance of Lachnospiraceae and Akkermansiaceae families. In contrast, immobilized phenolics produced an increase in the abundance of Bacteroides with a reduction in the ratio of Firmicutes to Bacteroidetes. The metabonomic profile was also affected by free and immobilized phenolics differently in terms of fermentation by-products and phenolic biotransformation metabolites. Thus the results suggest the importance of evaluating the impact of new compounds or materials added to food on human gut microbiota and their potential use to modulate microbiota composition.
Competing Interests: Declaration of Competing Interest The author declare the following financial interests/personal relationships which may be considered as potential competing interests: Emma Allen-Vercoe is the CSO and co-founder of NuBiyota LLC, a company that is developing human gut microbiota-based live microbial products to treat a range of indications. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2022 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE